翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

capacitive displacement sensor : ウィキペディア英語版
capacitive displacement sensor
Capacitive displacement sensors “are non-contact devices capable of high-resolution measurement of the position and/or change of position of any conductive target”.〔(Lion Precision Capacitive Sensor Overview ), An overview of capacitive sensing technology from Lion Precision.〕 They are also able to measure the thickness or density of non-conductive materials. Capacitive displacement sensors are used in a wide variety of applications including semiconductor processing, assembly of precision equipment such as disk drives, precision thickness measurements, machine tool metrology and assembly line testing. These types of sensors can be found in machining and manufacturing facilities around the world.
==Basic capacitive theory==
Capacitance is an electrical property which is created by applying an electrical charge to two conductive objects with a gap between them. A simple demonstration is two parallel conductive plates of the same profile with a gap between them and a charge applied to them. In this situation, the Capacitance can be expressed by the equation:
: C = \dfrac
Where ''C'' is the capacitance, ε0 is the permittivity of free space constant, ''K'' is the dielectric constant of the material in the gap, ''A'' is the area of the plates, and ''d'' is the distance between the plates.
There are two general types of capacitive displacement sensing systems. One type is used to measure thicknesses of conductive materials. The other type measures thicknesses of non conductive materials or the level a fluid.
A capacitive sensing system for conductive materials uses a model similar to the one described above, but in place of one of the conductive plates, is the sensor, and in place of the other, is the conductive target to be measured. Since the area of the probe and target remain constant, and the dielectric of the material in the gap (usually air) also remains constant, "any change in capacitance is a result of a change in the distance between the probe and the target." 〔(Capacitive Sensor Operation and Optimization How Capacitive Sensors Work and How to Use Them Effectively ), An in depth discussion of capacitive sensor theory from Lion Precision.〕 Therefore, the equation above can be simplified to:
:C \propto \dfrac
Where α indicates a proportional relationship.
Due to this proportional relationship, a capacitive sensing system is able to measure changes in capacitance and translate these changes into distance measurements.
The operation of the sensor for measuring thickness of non-conductive materials can be thought of as two capacitors in series, with each having a different dielectric (and dielectric constant). The sum of the thicknesses of the two dielectric materials remains constant but the thickness of each can vary. The thickness of the material to be measured displaces the other dielectric. The gap is often an air gap, (dielectric constant = 1) and the material has a higher dielectric. As the material gets thicker, the capacitance increases and is sensed by the system.
A sensor for measuring fluid levels works as two capacitors in parallel with constant total area. Again the difference in the dielectric constant of the fluid and the dielectric constant of air results in detectable changes in the capacitance between the conductive probes or plates.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「capacitive displacement sensor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.